A Note about Secondary Circulation in two Dimensional Flow
نویسندگان
چکیده
منابع مشابه
Two-fluid Electrokinetic Flow in a Circular Microchannel (RESEARCH NOTE)
The two-fluid flow is produced by the combined effects of electroosmotic force in a conducting liquid and pressure gradient force in a non-conducting liquid. The Poisson-Boltzmann and Navier-Stokes equations are solved analytically; and the effects of governing parameters are examined. Poiseuille number increases with increasing the parameters involved. In the absence of pressure gradient, the ...
متن کاملDynamic and Deformation of a liquid Droplet in a Convective Two-Dimensional Laminar Flow
The objective of this research is to develop an accurate numerical method to be used in showing the deformation of a liquid fuel droplet in a convective field. To simultaneously solve the internal liquid droplet flow field as well as the external gas phase flow field, a nonstaggered rectangular grid system without any coordinate transformation is used. Transition from the gas field to the liqui...
متن کاملDynamic and Deformation of a liquid Droplet in a Convective Two-Dimensional Laminar Flow
The objective of this research is to develop an accurate numerical method to be used in showing the deformation of a liquid fuel droplet in a convective field. To simultaneously solve the internal liquid droplet flow field as well as the external gas phase flow field, a nonstaggered rectangular grid system without any coordinate transformation is used. Transition from the gas field to the liqui...
متن کاملtwo-dimensional magma flow
exact solution for steady two-dimensional flow of an incompressible magma is obtained. themagmatic flow is studied by considering the magma as a second grade fluid. the governing partialdifferential equations are transformed to ordinary differential equations by symmetry transformations. resultsare discussed through graphs to understand the rheology of the flowing magma
متن کاملSecondary Circulation in Granular Flow Through Nonaxisymmetric Hoppers
Jenike’s radial solution, widely used in the design of materials-handling equipment, is a similarity solution of steady-state continuum equations for the flow under gravity of granular material through an infinite, right-circular cone. In this paper we study how the geometry of the hopper influences this solution. Using perturbation theory, we compute a first-order correction to the (steady-sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of the Japan Society of Aeronautical Engineering
سال: 1954
ISSN: 1883-5422
DOI: 10.2322/jjsass1953.2.191